
2023 Leo Schneider Student Team Competition (with solutions)

1. Take an integer greater than 9. Double its last digit and subtract this from the number formed by
the remaining digits. Prove that this difference is divisible by 7 if and only if the original number is
divisible by 7. For example, if our original number is 2023, we get 202 − 6 = 196, and repeating this
process gives us 19− 12 = 7, which is divisible by 7. Therefore, 196, and hence 2023, is divisible by 7
(indeed 2023 = 7 · 289). On the other hand, if our original number is 2024, we get 202− 8 = 194, and
repeating this process gives us 19− 8 = 11, which is not divisible by 7.

Solution. Let N = an10n + an−110n−1 + · · · + a110 + a0, where n > 0, 0 ≤ ai ≤ 9 for all i, and
an 6= 0. Put N = an10n−1 + an−110n−2 + · · · + a1 − 2a0. Notice that 10N = N − 21a0. Therefore,
3N ≡ N (mod 7). Since 3 is relatively prime to 7, we have that N is divisible by 7 if and only if N is
divisible by 7.

2. Let ABC be a triangle in which m∠B and m∠C are both greater than 60◦. Let BCD be an equilateral
triangle, with D inside 4ABC, and let BEF be another equilateral triangle, with E on AB and F
on AC. Suppose, moreover, that triangles BCD and BEF are congruent. Show that m∠A < 30◦.

Solution. Let θ = m∠A. Since BF = BC, 4BCF is an isosceles triangle and thus

m∠ACB = m∠BFC

= 180◦ −m∠BFA

= 180◦ − (180◦ − θ −m∠ABF )

= θ + 60◦

Therefore, m∠ABC = 180◦ − (θ + 60◦)− θ = 120◦ − 2θ. Since m∠ABC > 60◦, this forces θ < 30◦.

3. Let A and B be different n× n matrices with real entries. If A3 = B3 and A2B = B2A, can A2 +B2

be invertible? Prove your answer.

Solution. A2 +B2 cannot be invertible.

Assume, by contradiction that A and B are different n×n matrices with real entries and that A2 +B2

is invertible, ie. (A2 +B2)−1 exists. Then,

(A2 +B2)A = A3 +B2A

= B3 +B2A

= B3 +A2B

= (B2 +A2)B

= (A2 +B2)B

Multiplying both sides on the left by (A2 + B2)−1 yields A = B. But A and B were different, which
is a contradiction.

4. Find all right triangles with integer side lengths such that the area and perimeter of the triangle eval-
uate to the same number (with different units, obviously!).

Solution. Suppose the legs have length a and b. Then we wish to solve the equation

1

2
ab = a+ b+

√
a2 + b2



over the positive integers. Isolating the radical, squaring both sides, rearranging terms, and factoring
gives us

ab(ab− 4a− 4b+ 8) = 0,

which means that a = 4(b− 2)/(b− 4). Put u = b− 4. Then we have that a = 4 + 8/u. Since a and b
are positive integers, the only possible values for u are 1, 2, 4, and 8. So the only triangles that satisfy
our hypotheses are 5-12-13 and 6-8-10 triangles.

5. Find a set of three consecutive odd integers {a, b, c} for which the sum of squares a2 + b2 + c2 is an
integer made of four identical digits. For example, 2222 is an integer made of four identical digits and
{7, 9, 11} is a set of three consecutive odd integers.

Solution. We claim the set {41, 43, 45} satisfies the conditions. To show this, consider three consec-
utive odd integers, 2n− 1, 2n+ 1, and 2n+ 3. Let the sum of the three squares be 1111x where x is
the repeating digit, 1 ≤ x ≤ 9. We have,

(2n− 1)2 + (2n+ 1)2 + (2n+ 3)2 = 1111x

(4n2 − 4n+ 1) + (4n2 + 4n+ 1) + (4n2 + 12n+ 9) = 1111x

12n2 + 12n+ 11 = 1111x

Taking mod 2, we have x ≡ 1 mod 2, so x must be odd.
Taking mod 3, we have x ≡ 2 mod 3, so x = 2, 5 or 8.
This means x must be 5 and 12n2 + 12n+ 11 = 5555. Solving this equation gives,

12n2 + 12n+ 11 = 5555

12n2 + 12n− 5544 = 0

n2 + n− 462 = 0

(n− 21)(n+ 22) = 0

Since n must be odd, n = 21 and thus 2n− 1 = 41, 2n+ 1 = 43, and 2n+ 3 = 45.

6. A tangent line to the ellipse x2 + 4y2 = 4 meets the x-axis and y-axis at the points A and B, respec-
tively. Find the minimum value of AB, the length of the line segment with endpoints A and B.

Solution. Using implicit differentiation, we have y′ = −x/(4y). Therefore, the line tangent to this
ellipse at the point (x0, y0) is given by

y = − x0
4y0

(x− x0) + y0.

Setting x = 0 gives

y =
x20
4y0

+ y0 =
x20 + 4y20

4y0
=

1

y0
,

and setting y = 0 gives

x =
4y20
x0

+ x0 =
x20 + 4y20

x0
=

4

x0
.

(Recall that since (x0, y0) is on the ellipse, we have x20 + 4y20 = 4.) Therefore, (AB)2 = 16/x20 + 1/y20 .
We wish to minimize 16/x2 + 1/y2, for −2 ≤ x ≤ 2, subject to the constraint x2 + 4y2 = 4. This can
be done with Lagrange multipliers or with straight substitution. Omitting the details, the minimum
value of (AB)2 occurs when x2 = 8/3 and y2 = 1/3. At these points, (AB)2 = 9, so our answer is 3.



7. Find
∫ 1

0
x arcsinx dx.

Solution. Let I denote the above integral. Using integration by parts with u = arcsinx and dv = x dx,
we get

I =
x2

2
arcsinx

∣∣∣∣1
0

− 1

2

∫ 1

0

x2√
1− x2

dx.

Evaluating the first term and using the substitution sin θ = x in the second term followed by the trig
identity sin2 θ = (1− cos(2θ))/2, gives

I =
π

4
− 1

2

∫ π/2

0

sin2 θ dθ

=
π

4
− 1

4

∫ π/2

0

(1− cos(2θ)) dθ

=
π

4
− 1

4

(
θ − 1

2
sin(2θ)

) ∣∣∣∣π/2
0

=
π

4
− π

8

=
π

8
.

8. In a magical isosceles triangle 4ABC, we have |AC| = |BC|. Let D be the midpoint between A and
B. The inscribed circle of 4ABC intersects the line segment CD in a point E that is in the interior
of the triangle. Suppose that |AB| = 15 and |CE| = 8. Determine |AC|.

Solution. Consider the following sketch of the triangle 4ABC with inscribed circle.

We let x = |AC|, r be the radius of the inscribed circle, O be the center of the inscribed circle, and
F be the intersection of the inscribed circle with the segment BC. We note that the right triangle

ODB is congruent to the right triangle OFB. Since |DB| =
15

2
, it follows that |FB| =

15

2
. So,

|CF | = x− 15

2
.

Now, the smaller right triangle OFC is similar to the larger right triangle BDC. Hence,

| OF |
| DB |

=
| CF |
| CD |

=
| CO |
| BC |



Substituting in our variables gives,

r

15/2
=
x− 15/2

2r + 8
=
r + 8

x

On cross-multiplying the first and second fractions above, we find that

15

2

(
x− 15

2

)
= r(2r + 8)

On cross-multiplying the first and third fractions above, we find that

rx =
15

2
(r + 8)

rx =
15

2
r + 60

r

(
x− 15

2

)
= 60

x− 15

2
=

60

r

Substituting this into the equation above gives,

15

2

(
x− 15

2

)
= r(2r + 8)

15

2

(
60

r

)
= r(2r + 8)

450

r
= 2r2 + 8r

450 = 2r3 + 8r2

2r3 + 8r2 − 450 = 0

r3 + 4r2 − 225 = 0

(r − 5)(r2 + 9r + 45) = 0

Using the quadratic forumla for the quadradic equation does not give real roots:

r =
−9±

√
92 − 4(1)(45)

2

=
−9±

√
81− 180

2

=
−9±

√
−99

2

Thus the only real root to the original cubic equation is r = 5. Substituting this back into the equation
above allows us to solve for | AC |= x:

x− 15

2
=

60

r

x− 15

2
=

60

5

x− 15

2
= 12

x =
39

2



9. Determine the number of ways that one can tile a 4× 13 rectangle with 4× 1 rectangles.

Solution. Let Tn denote the number of tilings of a 4×n rectangle with 4×1 rectangles. The upper left
corner of the 4×n rectangle is either covered with a vertical 4×1 rectangle, leaving a 4×n−1 rectangle
left to tile, or a horizontal 4× 1 rectangle with 3 horizontal 4× 1 rectangles underneath it, leaving a
4× n− 4 rectangle left to tile. Thus, for n ≥ 5, Tn = Tn−1 + Tn−4. Noting T1 = 1, T2 = 1, T3 = 1 and
T4 = 2, we use the recurrence relation to get T5 = 3, T6 = 4, T7 = 5, T8 = 7, T9 = 10, T10 = 14, T11 =
19, T12 = 26 and finally T13 = 36.

10. Katie and David are playing a game in which Katie rolls a fair n-sided die and David rolls a fair
m-sided die. Katie rolls first and the winner is the first person to roll a 1. Katie and David are equally
likely to win the game. How are m and n related?

Solution. The probability that Katie wins is 1
n +

(
n−1
n

) (
m−1
m

) (
1
n

)
+
(
n−1
n

)2 (m−1
m

)2 ( 1
n

)
+ · · · , an

infinite geometric series which sums to
1
n

1−(n−1
n )(m−1

m )
. This must equal 1

2 and thus

1

n
=

1

2
− 1

2

(
n− 1

n

)(
m− 1

m

)
1

2

(
n− 1

n

)(
m− 1

m

)
=
n− 2

2n

m− 1

m
=
n− 2

n− 1

m = n− 1



2022 Leo Schneider Student Team Competition (with solutions)

1. Find (with proof) all whole number values of n so that the binary expansion of n! contains exactly
two 1’s.

Solution. This means that n! = 2a + 2b, for some non-negative integers a 6= b. Reducing both sides
mod 7, we notice that 2a is congruent to either 1, 2, or 4 mod 7. This means that 2a + 2b can never
be congruent to 0 mod 7, and thus n ≤ 7. Subsequently, n from 1 to 6 can easily be checked by hand.
Only 3! = 4 + 2 and 4! = 16 + 8 satisfy the given condition.

2. Consider a game played on a finite sequence of positive integers in which two types of moves, A
and B, are allowed: A move of type A (“Add”) replaces two adjacent integers in the sequence by

their sum; for example (. . . , 20, 11, . . .)
A−→ (. . . , 31, . . .). A move of type B (“Break up”) replaces

a multi-digit integer in the sequence by the sequence of its nonzero decimal digits; for example,

(. . . , 2021, . . .)
B−→ (. . . , 2, 1, 1, . . .).

The moves may be combined in any manner. For example, given the sequence (3, 14, 159, 26), a possible
sequence of moves is the following:

(3, 14, 159, 26)
A−−−→ (17, 159, 26)

B−−−→ (17, 1, 5, 9, 26)
A−−−→ (18, 5, 9, 26)

A−−−→ (18, 5, 35)

A−−−→ (18, 40)
B−−−→ (18, 4)

B−−−→ (1, 8, 4)
A−−−→ (9, 4)

A−−−→ (13)
B−−−→ (1, 3)

A−−−→ (4)

Once the sequence is reduced to a single one-digit number, any further moves will leave it unchanged,
the game terminates, and we call the final number obtained the terminal number of the game. Sup-
pose this game is played on the sequence (1, 2, 3, 4, . . . , 2022). What is the terminal number? (For full
credit, you must also show that this number is unique.)

Solution. The key observation is that the remainder modulo 9 of the sum of all terms of the sequence
is an invariant under both moves. This is obvious in the case of a move of type A since such a move
leaves the sum of all terms unchanged. In the case of a move of type B, this follows from the divisibility
test for 9, according to which the sum of decimal digits of a positive integer is congruent to the integer
itself.
Since the terminal number is a single-digit positive integer, it is uniquely determined by the remainder
modulo 9 of the sum of all terms of the sequence. For the given sequence (1, 2, 3, . . . , 2022), we have

2022∑
i=1

i =
2022 · 2023

2
= 1011 · 2023 ≡ 3 · 7 = 21 ≡ 3 mod 9,

So the terminal number for this sequence is 3.

3. Let f(x) = x2+bx+c where b and c are real numbers between –1 and 1, selected uniformly at random.
What is the probability that both roots of f(x) are positive real numbers?

Solution. The roots of f(x) are given by −b±
√
b2−4c
2 , and thus the roots are both positive real num-

bers if and only if b2 ≥ 4c, b < 0, and c > 0. Considering (b, c) to be coordinates in the Cartesian
plane, the set of all possible values for (b, c) is represented by a 2 × 2 square with area 4. The set of
coordinates for which both roots are positive real numbers is represented by the region in the upper

left part of the square and under the curve c = b2/4. This region has area
∫ 0

−1
b2

4 db = b3

12 |
0
−1 = 1

12 .

Thus, the probability both roots of f(x) are positive real numbers is
1
12

4 = 1
48 .



4. Suppose that A and B are two n× n matrices. Prove that

(A+AB−1A)−1 + (A+B)−1 = A−1,

assuming that all these inverses exist.

Solution. First, note that (XY )−1 = Y −1X−1. Now,

(A+AB−1A)−1 + (A+B)−1 = [AB−1(B +A)]−1 + (A+B)−1

= (B +A)−1BA−1 + (A+B)−1

= (A+B)−1BA−1 + (A+B)−1

= (A+B)−1(BA−1 + I)

= (A+B)−1(B +A)A−1

= (A+B)−1(A+B)A−1

= A−1.

5. An urn contains 3 red balls and 2 blue balls. A second urn contains 2 red balls and an unknown
number of blue balls. Two balls are drawn at random from the first urn and placed in the 2nd urn.
A ball is then randomly drawn from the 2nd urn and the probability that it is blue is 4

5 . How many
blue balls are initially in the 2nd urn?

Solution. Let B be the number of blue balls in the 2nd urn. The probability of drawing two red balls

from the first urn is
(3
2)

(5
2)

= 3
10 and then the probability of drawing a blue ball from the 2nd urn is B

B+4 .

The probability of drawing one red ball and one blue ball from the first urn is
(3
1)(

2
1)

(5
2)

= 6
10 and then

the probability of drawing a blue ball from the 2nd urn is B+1
B+4 . The probability of drawing two blue

balls from the first urn is
(2
2)

(5
2)

= 1
10 and then the probability of drawing a blue ball from the 2nd urn

is B+2
B+4 . Therefore,

3

10
× B

B + 4
+

6

10
× B + 1

B + 4
+

1

10
× B + 2

B + 4
=

4

5
;

which means 3B + 6B + 6 +B + 2 = 8B + 32, or B = 12.

6. Given an equilateral triangle 4ABC with sides of length 1 unit and with an arbitrary interior point
P , draw the line segments PD, PE and PF that are perpendicular to the 3 sides of the triangle. Let
s = PD + PE + PF , the sum of the lengths of the 3 segments. Find the minimal value of s.

Solution. For any interior point P , s =
√
3
2 . Draw segments from each of the vertices of 4ABC to

the point P . These segments will partition the equilateral triangle into 3 smaller triangles and thus
the area of the equilateral triangle is equal to the sum of the areas of these 3 smaller triangles. Thus,√

3
4 = 1

2PD · 1 + 1
2PE · 1 + 1

2PF · 1 = 1
2 (PD + PE + PF ). Hence, s =

√
3
2 .



7. Find
∫

ln(x+
√
x2 − 1) dx.

Solution #1. Here, we first notice that
√
x2 − 1 suggests substituting x = sec(θ), Then dx =

sec(θ) tan(θ)dθ. Then, since
√
x2 − 1 =

√
sec(θ)2 − 1 =

√
tan(θ)2, this turns the integral into∫

ln(sec(θ) + tan(θ)) · sec(θ) tan(θ)dθ. But now, ln(sec(θ) + tan(θ)) is exactly the integral of sec(θ).
So we can solve this integral with integration by parts by setting u = ln(sec(θ) + tan(θ)) and
dv = sec(θ) tan(θ), so that v = sec(θ) and du = sec(θ). Then the integration by parts formula
gives us

∫
ln(sec(θ) + tan(θ)) · sec(θ) tan(θ)dθ = sec(θ) ln(sec(θ) + tan(θ)) −

∫
sec(θ)2, which simpli-

fies to sec(θ) ln(sec(θ) + tan(θ)) − tan(θ). Converting back to x’s using the fact that sec(θ) = x and
tan(θ) =

√
x2 − 1, we get x ln(x+

√
x2 − 1)−

√
x2 − 1 + C.

Solution #2. We use integration by parts with u = ln(x+
√
x2 − 1) and dv = dx. Then v = x, and

du =
1 + x√

x2−1

x+
√
x2 − 1

dx =
1√

x2 − 1
dx.

Therefore, ∫
ln(x+

√
x2 − 1) dx = x ln(x+

√
x2 − 1)−

∫
x√

x2 − 1
dx

= x ln(x+
√
x2 − 1)−

√
x2 − 1 + C.

8. Show that 2022 divides 67610 − 1024.

Solution. Let n = 67610 − 1024. Since 2022 = 2 · 3 · 337, we need to show that 2, 3, and 337 divide
n. Notice that n = (2 · 338)10 − 210 = 210(33810 − 1), so it is clearly divisible by 2. Working mod 337,
we have 33810 − 1 ≡ 110 − 1 = 0; and working mod 3, we have 33810 − 1 ≡ (−1)10 − 1 = 0.

9. In polar coordinates, r = 1+cos θ describes a cardioid. Find the maximum (vertical) distance between
this cardioid and the x-axis.

Solution. We wish to maximize y = r sin θ = (1 + cos θ) sin θ, for 0 ≤ θ ≤ π. Using the product rule
and the fact that sin2 θ = 1− cos2 θ gives us

y′ = 2 cos2 θ + cos θ − 1 = (2 cos θ − 1)(cos θ + 1),

so the maximum value of y occurs when θ = π/3. At this point, y = 3
√

3/4.

10. The quadrilateral ABCD is partitioned into four triangles by means of the diagonals AC and BD.
The areas of three of the triangles are indicated in the figure below.

What is the area of the quadrilateral?



Solution. Let P be the point of intersection of the diagonals, as shown below.

In general, let (XY Z) denote the area of triangle XY Z. Let hD be the altitude from D to AC, and
let hB be the altitude from B to AC. Then,

(APD)

(CPD)
=

1
2 (AP )hD
1
2 (CP )hD

=
(AP )

(CP )
,

and,

(ABP )

(CBP )
=

1
2 (AP )hB
1
2 (CP )hB

=
(AP )

(CP )
.

So,

80

(CPD)
=

(AP )

(CP )
=

150

180

Thus, (CPD) = 96, and the area of the quadrilateral is 180 + 150 + 80 + 96 = 506.
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1. Find the last two digits of 2021! + 2020! + 2019! + · · ·+ 2! + 1!.

Solution. Working (mod 100), we need the last two digits of 1! + 2! + · · ·+ 9! ≡ 1 + 2 + 6 +

24 + 20 + 20 + 40 + 20 + 80 = 213 ≡ 13.

2. Find
∫ 8
−1

√
1 +
√

1 + x dx.

Solution. We use substitution with u =
√

1 +
√

1 + x. Then (u2 − 1)2 = 1 + x and so

2(u2 − 1)2u du = dx. Then∫ 8

−1

√
1 +
√

1 + x dx = 4

∫ 2

1
(u4 − u2) du

= 4

(
u5

5
− u3

3

) ∣∣∣∣2
1

=
232

15

3. How many sequences of length 10 consisting of letters drawn with replacement from the set

{M,A,T,H} have the letters in alphabetic order?

Solution. This involves counting arrangements of indistinguishable letters into 4 distinct,

some possibly empty, boxes (one box for each letter in the set). We can imagine this using

the traditional “stars and bars” argument in combinatorics, by determining which of the

10+4−1 = 13 positions (the 10 locations of the sequence plus 3 bars splitting up the letters)

to place the 3 bars. Once the arrangement has been set, each bar represents the point where

the sequence jumps to the next letter in the alphabet. (For example, ∗∗∗∗∗|| ∗ | ∗ ∗ ∗∗ would

represent the sequence AAAAAMTTTT.) Thus, there are
(
13
3

)
= 286 different sequences.

4. Find the sum of the digits of the number 9 + 99 + 999 + · · ·+ 999 · · · 9, where the last number

in our sum consists of 2021 9s.

Solution. We can write the sum as

(101 − 1) + (102 − 1) + (103 − 1) + · · ·+ (102021 − 1) = 10 + 102 + 103 + · · ·+ 102021 − 2021

= 111 · · · 10− 2021,



where the first number in the last line has 2021 1s.

Since 111110 − 2021 = 109089, our original number is 111 · · · 109089, where there are 2017

1s. The sum of this number’s digits is therefore 2017 + 9 + 8 + 9 = 2043.

5. The matrix M =

t 1− t

1 2t

 has 1 as an eigenvalue. What are the possibilities for the other

eigenvalue?

Solution. The characteristic polynomial ofM is (t−λ)(2t−λ)−(1−t) = 2t2−3tλ+(t+λ2−1).

Since λ = 1 is a root of this polynomial, we know 2t2 − 2t = 0. This gives t = 1 or t = 0.

Checking these possibilities giveM =

1 0

1 2

, which has eigenvalues 1 and 2, orM =

0 1

1 0

,

which has eigenvalues 1 and −1. Thus the possible second eigenvalues are 2 or −1.

(Note: This problem can also be reasonably solved using the determinant and trace of M

itself, or by assuming M ·

x
y

 =

x
y

 and deducing a relationship between x and y.)

6. Suppose a and b are real numbers such that

lim
x→0

sin2 x

eax − bx− 1
=

1

2
.

Determine all possible ordered pairs (a, b).

Solution. Since sinx = 0 when x → 0, the given limit must be in indeterminate form, 0
0 .

So, by L’Hôpital’s Rule,

lim
x→0

sin2 x

eax − bx− 1
= lim

x→0

2 sinx cosx

aeax − b
.

Now, note that as x → 0, 2 sinx cosx → 0 but aeax − b → a − b. So if a 6= b, the limit is 0,

so we let a = b. Then, by L’Hôpital’s Rule again, we get

lim
x→0

sin2 x

eax − bx− 1
= lim

x→0

−2 sin2 x+ 2 cos2 x

a2eax

= lim
x→0

2(cos2 x− sin2 x)

a2eax

=
2(1− 0)

a2

=
2

a2

Then, 2
a2

= 1
2 means a2 = 4 so a = ±2. Thus, the only solutions are (2, 2) and (−2,−2).



7. Consider the following right triangle, with m(BC) = 12:
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A

BC 12

A semicircle is drawn with a diameter along side AC. One endpoint of the diameter is C,

and the other is exactly one unit away from A. If the semicircle is tangent to side AB, find

the radius of the circle.

Solution. Let O be the center of the circle, and let D be the point of tangency along AB.

Let r denote the radius of the circle and y the length of AD. Then ∆AOD is a right triangle,

with m(AO) = r+ 1 and m(OD) = r. Then by the Pythagorean theorem, (r+ 1)2 = y2 + r2,

or y2 = 2r + 1. But also, ∆AOD is similar to ∆ABC, so that y
r = 2r+1

12 . Solving for y

and squaring gives y2 =
(
(2r+1)r

12

)2
. Setting this equal to 2r + 1, we can reduce to the cubic

2r3 + r2 − 144 = 0. This has only one real root r = 4. (This means ∆ABC has side lengths

9, 12, 15, and ∆AOD has side lengths 3,4,5.)

8. Let f(x) = x cosx. Find, with proof, f (2021)(0), the 2021st derivative of f evaluated at 0.

Solution. The Taylor series of f , centered at 0, is given by

x(1− x2

2!
+
x4

4!
− x6

6!
+ · · · ) = x− x3

2!
+
x5

4!
− x7

6!
+ · · · .

Since the coefficient of the x2021 term is 1
2020! , we have that

f (2021)(0) = 2021! · 1

2020!
= 2021.

(Alternatively, one can show by induction that

f (2n+1)(x) = (−1)n(−x sinx+ (2n+ 1) cosx),

for all n ≥ 0, and then plug in n = 1010 and x = 0.)

9. Let P (x) be a quadratic polynomial with real coefficients such that P (3) = 2021 and

P (x) = P (0) + P (1)x+ P (2)x2

for all real x. What is P (−1)?



Solution. Plugging x = 1 and x = 2 into the given equality yields the system of equations,

P (1) = P (0) + P (1) + P (2) and P (2) = P (0) + 2P (1) + 4P (2)

The first equality simplifies to P (0) = −P (2) and plugging this into the second equation

yields P (1) = −P (2). So, we have the equality,

P (x) = −P (2)− P (2)x+ P (2)x2 = P (2)(x2 − x− 1)

Now, since P (3) = 2021, we have,

2021 = P (2)(32 − 3− 1) = 5P (2)

so P (2) = 2021
5 . Finally, P (x) = 2021

5 (x2 − x− 1), so P (−1) = 2021
5 (1 + 1− 1) = 2021

5 .

10. You roll three fair six-sided dice. Find the probability that the product of the three numbers

rolled is a perfect square.

Solution. Let N be the product of the three dice. The only possible square values of N are

1, 4, 9, 16, 25, 36, 64, 100, and 144. The only way to get N = 1 is to roll three ones, and

the only way to get N = 64 is to roll three fours. There are three ways to get each of N = 9

(two threes and a one), N = 25 (two fives and a one), N = 100 (two fives and a four), and

N = 144 (two sixes and a four). There are six ways to get both of N = 4 (either two ones

and a four or two twos and a one) and N = 16 (two fours and a one or two twos and a four).

Finally, there are twelve ways to get N = 36 (either two sixes and a one; two threes and a

four; or one two, one three, and one six).

Therefore, in total, there are 38 ways (where order matters!) to have N be a perfect square,

and our probability is 38
216 = 19

108 ≈ 0.176.



2019 Leo Schneider Student Team Competition (with solutions)

1. For each a < 0, consider the line perpendicular to the curve y = x2 at x = a. This line intersects the

curve at another point. Find the minimum possible value of the x-coordinate of this second intersection

point.

Solution: Since the slope of y = x2 at a is 2a, the slope of the perpendicular at this point is −1/(2a).

The equation of the perpendicular is then

y − a2 =
−1

2a
(x− a).

Therefore, the x-coordinate of the second intersection point satisfies

x2 − a2 =
−1

2a
(x− a).

Thus, x = −a − 1
2a . Using calculus, we see that this function attains its minimum value of

√
2 when

a = −1/
√

2.

2. Compute

∫
1√

x + 3
√
x
dx.

Solution: We make the rationalizing substitution t = 6
√
x, so that x = t6 and dx = 6t5dt. Then the

integral becomes
∫

6t5

t3+t2 dt =
∫

6t3

t+1 . From long division, this is equivalent to
∫

6t2 − 6t + 6 − 6
t+1dt.

Finally, we can integrate directly to get 2t3 − 3t2 + 6t− 6 ln |t + 1|. Substituting back in for t, we get

2
√
x− 3 3

√
x + 6 6

√
x− 6 ln | 6

√
x + 1|+ C.

3. Find the value of

∫ ∞
0

(
3

4

)bxc
dx, where bxc is the floor function, which gives the largest integer

less than or equal to x.

Solution: Note that f(x) =

(
3

4

)bxc
is a step function with value (3/4)0 on [0, 1), value (3/4)1 on [1,

2), value (3/4)2 on [2, 3), . . . Thus we can write the integral as a Riemann sum as follows:∫ ∞
0

(
3

4

)bxc
dx =

∞∑
n=0

(
3

4

)n

=
1

1− 3
4

= 4.

4. Three people, named A, B and C, throw a die alternately. First A throws, then B, then C, and this

keeps repeating. What is the probability that A throws the first six, B the second six and C the third

six?

Solution: To find the exact probability, the probability that A throws a 6 on the first try is 1/6.

Their probability of rolling the first 6 on the second try is (5/6)3 ∗ 1/6. (This assumes that on the

first time through, no one throws a 6, which has probability (5/6)3, but then A does throw a 6 on

the second time through.) Continuing in this way, the total probability that A throws the first 6 is

1/6 + 1/6(5/6)3 + (1/6)(5/6)6 + . . .. This is a geometric series with ratio (5/6)3, so it converges to

36/91. Then if A throws the first 6, the process starts over but now B is going first. So their probability

of rolling the next 6 is also 36/91. The same reasoning applies to C if B throws the second 6. So the

total probability that the first three 6’s come up for A-B-C is (36/91)3.



5. Six regular hexagons surround a regular hexagon of side length 1 as shown. What is the area of

4ABC?

Solution: Label points E and F as shown in the figure, and let D be the midpoint of B̄E. Because

4BFD is a 30-60-90◦ triangle with hypotenuse 1, then length of B̄D is
√
3
2 . Therefore, the length of

B̄C (4 times the length of B̄D) is 2
√

3. The formula for the area of an equilateral triangle with side

length s is
√
3
4 s2. Thus, the area of 4ABC is

√
3
4 (2
√

3)2 = 3
√

3.

6. Find lim
n→∞

n∑
k=0

1√
n2 + k

.

Solution: For 0 ≤ k ≤ n we have
√
n2 + n ≥

√
n2 + k ≥

√
n2, or

1√
n2 + n

≤ 1√
n2 + k

≤ 1

n
.

Therefore
n + 1√
n2 + n

≤
n∑

k=0

1√
n2 + k

≤ n + 1

n
;

and, by the Squeeze Theorem, lim
n→∞

n∑
k=0

1√
n2+k

= 1.

7. A two-digit number is uniquely determined by the answers to the following yes/no questions.

1. Is the number divisible by 2?

2. Is the number divisible by 3?

3. Is the number divisible by 5?

4. Is the number divisible by 7?

If the answer to the first question is “yes”, what is the number?

Solution: Looking at all 16 possible combinations of yes/no answers, we see that only two of them

(NNYY and YNYY) yield a unique two-digit number. YNYY yields the number 70.



8. Write 2019 as the difference of squares of positive integers in two different ways.

Solution: Suppose 2019 = a2 − b2 = (a − b)(a + b), for some positive integers a and b. Since

2019 = 1(2019) = 3(673), we have either a + b = 2019 and a − b = 1, or a + b = 673 and a − b = 3.

In the first case we get a = 1010 and b = 1009, and in the second case we get a = 338 and b = 335.

Therefore

2019 = 10102 − 10092 = 3382 − 3352.

9. What is the largest integer a such that 7a divides 1000! ?

Solution: Since 994/7 = 142, there are 142 multiples of 7 in the product 1000!. However, this includes

the 20 numbers 49, 98, . . . 980 which contain an additional factor of 7, and then 343 and 686, which

contain yet another factor of 7. Thus, the total number of factors of 7 in 1000! is 142 + 20 + 2 = 164.

10. The base 5 representation of a positive integer has 3 digits. Reversing those digits gives the base 7

representation of the same number. What are the possible base 10 representations of that number?

Solution: The number can be expressed as

a · 50 + b · 51 + c · 52 = c · 70 + b · 71 + a · 72

which reduces to 48a+2b = 24c, or 24a+ b = 12c. Since a, b, and c, must be integers between 0 and 4,

we can rule out the cases where c is 0, 1, and 3, as they lead to values of b that are outside of our range.

So c must be 2 or 4. If c = 2, then b = 0 and a = 1, which means the number is 1 + 0 · 5 + 2 · 52 = 51.

If c = 4, then b = 0 and a = 2, which means the number is 2 + 0 · 5 + 4 · 52 = 102. Thus the possible

base 10 representations are 51 and 102.



2018 Leo Schneider Student Team Competition (SOLUTIONS)

1. Find

∫
x5

(x3 + 1)2
dx.

Solution. We can substitute u = x3 + 1, so that du = 3x2 dx, and u − 1 = x3. This means x5 =

1
3 (u−1) du. Then the integral becomes

1

3

∫
u− 1

u2
=

1

3

∫
1

u
− 1

u2
du =

1

3

(
ln(|x3 + 1|) +

1

x3 + 1

)
+C.

2. Evaluate the following limit:

lim
x→0

sin arctanx− tan arcsinx

arcsin tanx− arctan sinx
.

Solution. Computing the limit is possible if we remember (or calculate) the Taylor series for the

functions:

sinx = x− x3

3!
+ terms of order 5 or higher

tanx = x+
x3

3!
+ terms of order 5 or higher

arcsinx = x+
x3

3!
+ terms of order 5 or higher

arctanx = x− x3

3!
+ terms of order 5 or higher.

After composition and some manipulation, we get

lim
h→0

−x3 + terms of order 5 or higher

x3 + terms of order 5 or higher
= −1.

3. Let
(
1 +
√

2
)n

= An +Bn

√
2 with An and Bn rational numbers.

(a) Express
(
1−
√

2
)n

in terms of An and Bn.

(b) Compute lim
n→∞

An

Bn
.

Solution.

(a) Prove by induction that (1−
√

2)n = An −Bn

√
2.

(b) Since (1 +
√

2)n = An +Bn

√
2 and (1−

√
2)n = An −Bn

√
2, solve to find:

An =
(1 +

√
2)n + (1−

√
2)n

2
, Bn =

(1 +
√

2)n − (1−
√

2)n

2
√

2
.

So,
An

Bn
=
√

2 · (1 +
√

2)n + (1−
√

2)n

(1 +
√

2)n − (1−
√

2)n
=
√

2 · 1 + xn

1− xn

where x =
1−
√

2

1 +
√

2
. Since |x| < 1, xn → 0 as n→∞. So lim

n→∞

An

Bn
=
√

2.

4. You roll three fair dice. Find the probability that some subset of the numbers you rolled sums to 3.

(This includes possible rolls such as 1, 5, 3.)

Solution. We will count the number of combinations, out of the 63 total combinations, that “win”.

63 − 53 = 91 contain at least one 3. Of those remaining, if the first roll is a 4, 5, or 6, then the next

two rolls must be a 1 and a 2 (in either order). This gives us 6 more winning rolls. If a 2 is rolled

followed by a 1, then the third roll can be anything (other than a 3, which was already counted). If a



2 is rolled followed by anything other than a 1 or a 3, then the third roll must be a 1. This gives us 9

more winning rolls. If a 1 is rolled followed by a 2, then the third roll can be anything (other than a

3, which was already counted). If a 1 is rolled followed by a 4, 5, or 6, then the third roll must be a

2. This gives us 8 more winning rolls. This leaves 1,1,2 and 1,1,1 as the last two winning rolls. The

answer is therefore
91 + 6 + 9 + 8 + 2

63
=

116

216
=

29

54
.

5. What is the probability of an odd number of sixes turning up in a random toss of n fair dice?

Solution. For 0 ≤ k ≤ n, the probability of k sixes turning up in a random toss of n fair dice is(
n

k

)(
5

6

)n−k (
1

6

)k

;

hence, with a = 5/6 and b = 1/6, the required probability is

P =

(
n

1

)
an−1b+

(
n

3

)
an−3b3 +

(
n

5

)
an−5b5 + · · ·

= sum of the even-ranked terms in the expansion of (a+ b)n

=
1

2
{(a+ b)n − (a− b)n}

=
1

2

{
1−

(
2

3

)n}
.

6. 4ABC satisfies AC = 1 and ∠ACB is right. Points D and E are on AB with CD and CE trisecting

∠ACB. Suppose, moreover, that AB is the smallest integer such that AD, DE, and EB are distinct

rational numbers. Find AB.

Solution. Without loss of generality, let D be between A and E. Put k = AB and θ = ∠BAC. Then

sin θ =
√
k2−1
k and cos θ = 1

k . Using the Law of Sines on 4ACD gives us

AD

1/2
=

1

sin(150◦ − θ)
=

1
1
2 ·

1
k +

√
3
2 ·

√
k2−1
k

,

or AD = k
1+
√
3
√
k2−1 . Similarly, using the Law of Sines on 4BEC, we get EB = k

√
k2−1√

k2−1+
√
3
.

Now, k = 2 gives us AD = 1
2 and EB = 1. But this means that DE = 1

2 , so the distinctness property

is violated. The next value of k that “works” is k = 7, which gives us AD = 7
13 , EB = 28

5 , and

DE = 56
65 . So AB = 7.

7. Let A =

 −1 2018

0 −1

 and u =

 −1

0

. Compute A2018u.

Solution. We first compute Au:

Au =

 −1 2018

0 −1

 −1

0

 =

 1

0

 = −

 −1

0

 = −u

Thus, Au = −u. Repeatedly using this results, we have:

A2u = A(Au) = A(−u) = −Au = −(−u) = u

A3u = A(A2u) = A(u) = −u



A4u = A(A3u) = A(−u) = −Au = −(−u) = u

So, Anu =

−u if n is odd

u if n is even

Therefore, A2018u = u =

 −1

0

.

8. Find all integers c such that x2 + c divides x3 + 4x2 − x − 4. Explain why you have found all the

answers!

Solution. If x2 + c divides x3 + 4x2 − x − 4, then the quotient must be a linear polynomial with

leading coefficient 1, so x3 + 4x2 − x− 4 = (x2 + c)(x+ a). Then we must have ac = −4 and c = −1,

so that a = 4. This factorization does work, so c = −1 is the only solution.

9. Given that bxc is the greatest integer that is less than or equal to x, find the following integral:∫ 2

0

bxc − 2
⌊x

2

⌋
dx.

Solution. Since bxc is 0 for 0 ≤ x < 1 and is 1 for 1 ≤ x < 2, and similarly
⌊x

2

⌋
is 0 for 0 ≤ x < 2,

the function we are integrating looks like a step function which is 0 for 0 ≤ x < 1 and 1 for 1 ≤ x < 2.

Thus the integral is: ∫ 2

0

bxc − 2
⌊x

2

⌋
dx =

∫ 1

0

0 dx+

∫ 2

1

1 dx = 1.

10. Integers x, y, and z satisfy x + 2y + 3z = 60, 4x + 5y = 60, and z ≥ 0. What is the maximum value

of the product xyz?

Solution. Solving the given system for x and y gives us x = 5z − 60 and y = 60 − 4z. Then

xyz = −z(5z − 60)(4z − 60). Since z ≥ 0, the maximum value of this cubic occurs between its two

largest roots: z = 12 and z = 15. When z = 13, x = 5 and y = 8, giving us xyz = 520. When z = 14,

x = 10 and y = 4, giving us xyz = 560. The maximum value of xyz is 560.



2017 Leo Schneider Student Team Competition (SOLUTIONS)

1. Find ∫ ∞

4

1√
x(x− 1)

dx.

Solution. The substitution u2 = x transforms the integral into∫ ∞

2

2

u2 − 1
du.

We can rewrite this definite integral using partial fraction decomposition to get∫ ∞

2

(
1

u− 1
− 1

u+ 1

)
du = ln

u− 1

u+ 1

∣∣∣∣∞
2

= ln 1− ln
1

3

= ln 3.

2. If

u = 1 +
x3

3!
+

x6

6!
+ · · · , v =

x

1!
+

x4

4!
+

x7

7!
+ · · · , w =

x2

2!
+

x5

5!
+

x8

8!
+ · · · ,

prove that

u3 + v3 + w3 − 3uvw = 1.

Solution. The power series for u, v, and w converge for all x, and

du

dx
= w,

dv

dx
= u,

dw

dx
= v,

as we see by differentiating them. Letting

f = u3 + v3 + w3 − 3uvw,

we have

f ′ = 3u2u′ + 3v2v′ + 3w2w′ − 3uvw′ − 3uv′w − 3u′vw

= 3u2w + 3v2u+ 3w2v − 3uv2 − 3u2w − 3vw2 = 0.

Thus f = constant. But f(0) = (u(0))3 = 1, so f(x) = 1 for all x.

3. Find lim
n→∞

(
2(n+1)

n

)(
2n
n+1

) .

Solution.

lim
n→∞

(
2(n+1)

n

)(
2n
n+1

) = lim
n→∞

(2n+ 2)!

(n+ 1)!(n+ 1)!
· (n+ 1)!(n− 1)!

(2n!)

= lim
n→∞

(2n+ 2)(2n+ 1)

n(n+ 2)
= 4.



4. Jason has an 8 a.m. class this semester, and he is not a morning person. If he wakes up before 7:30,

he showers in the morning 60% of the time, but if he wakes up after 7:30, he showers only 10% of the

time. He only manages to wake up before 7:30 25% of the time, but when he does, he makes it to

class on time 80% of the time. When he doesn’t wake up before 7:30, he only makes it to class on

time 30% of the time. Assuming that on a given morning he takes a shower, what is the probability

that he makes it to class on time?

Note. Thanks to Professor Larry Robinson at ONU for pointing out a flaw in the problem. Not

enough information is given to find the solution. Can you find the flaw in the following solution?

Solution. Let A be the event that he wakes up on time, let B be the event that he showers in

the morning, and let C be the event that he makes it to class on time. We are given P (A) = .25,

P (B|A) = .6, P (B|A′) = .1, P (C|A) = .8, and P (C|A′) = .3. Then, we use Bayes’ theorem to

compute

P (A|B) =
P (A ∩B)

P (A ∩B) + P (A′ ∩B)
=

.15

.15 + .075
= 2/3.

and

P (A′|B) = 1/3.

Then, we compute P (C|B) = P (C ∩A|B)+P (C ∩A′|B) = P (A|B)P (C|A)+P (A′|B)P (C|A′), which

is 2/3 · .8 + 1/3 · .3 = .153.

5. Two points are chosen at random (with a uniform distribution) from the unit interval [0, 1]. What is

the probability that the points will be within a distance of 1/8 of each other?

Solution. The probability is the area of the region defined by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and |x−y| ≤ 1/8

(divided by the area of the unit square). But this is 1− 2 · (1− (1/8))2/2 = 2(1/8)− (1/8)2.

6. Michael Phelps’ favorite hobby in his offtime is alchemy. He has a machine that can change 1 gold

medal into 2 silver and 3 bronze, another machine that can turn 1 silver medal into 2 gold and 1

bronze, and a third machine that can turn 2 bronze medals into 3 gold and 1 silver. Starting with the

23 gold medals, 3 silver medals, and 2 bronze medals that he already has, can he use his machines to

end up with a total of exactly 27 gold medals, 17 silvers, and 18 bronzes? Find a sequence of uses of

the machines that accomplishes this or explain why it can’t be done.

Solution. A series of transformations using these machines can be described as a linear combina-

tion of the vectors


−1

2

3

,


2

−1

1

, and


3

1

−2

. (The first entry in each vector describes the change in

the number of gold medals, the second describes silvers, and the third bronze.) Michael wants to add

4 gold medals, 14 silvers, and 16 bronzes to his collection. Thus we want a solution of
−1 2 3

2 −1 1

3 1 −2



x

y

z

 =


4

14

16

 .



However, solving this system gives the unique solution x = 13/2, y = 3/2, z = 5/2. So this series of

transformations is not achievable since fractional numbers of uses of the machines are impossible.

7. Ten equally spaced points are marked around the circumference of a circle. Consider connecting them

into decagons two ways: first, by connecting all the nearest pairs of points, and second, by connecting

every third point.

Prove that the difference in side lengths of these two decagons is equal to the radius of the circle.

Solution. Geometric solution (draw just the right lines and it falls out via parallelograms!)

O
A

CD

F

G

H

J

X

Y

8. Find the largest integer that divides p2 − 1 for all primes p > 3.

Solution. If p = 5, then p2−1 = 24, so the answer must be a divisor of 24. Since p2−1 = (p+1)(p−1),

and p > 3 is odd, one of (p+1) and (p− 1) will be divisible by 2 while the other will be divisible by 4.

So the answer will be either 8 or 24. Furthermore, since p > 3 cannot be divisible by 3, either (p+ 1)

or (p− 1) must be divisible by 3. Thus the answer is 24.

9. What is the smallest number divisible by 225 that (written in base 10) contains only the digits 1 and

0? Explain your answer.

Solution. Since 225 = 25 · 9, the number in question must be divisible by 25, so that its final

two digits are 0’s, and the sum of its digits must be divisible by 9. The smallest such number is

11,111,111,100.

10. A sequence begins with a1, a2, and for n > 2 is defined by an = an−1 − an−2. Find the sum of the first

2016 terms and defend your answer.



Solution. From the recursion we can write out some terms,

a1, a2, a2 − a1,−a1,−a2, a1 − a2, a1, a2, ...

to see that the sequence of terms will be periodic. Now let’s look at Sn, the sum of the first n terms.

Writing out some terms

a1, a1 + a2, 2a2, 2a2 − a1, a2 − a1, 0, a1, a2, ....

we see that it is periodic with S6k = 0 for all k. Since 2016 = 0 (mod 6), we have that S2016 = 0.



2016 Leo Schneider Student Team Competition (SOLUTIONS)

1. Neither Mathematica nor Maple can find the exact value of the following definite integral. Can you?

We think you can. Do it! ∫ 2

0

(3x2 − 3x+ 1) cos(x3 − 3x2 + 4x− 2) dx.

Solution: We first split up the integral as∫ 2

0

(3x2 − 6x+ 4) cos(x3 − 3x2 + 4x− 2) dx+

∫ 2

0

(3x− 3) cos(x3 − 3x2 + 4x− 2) dx,

If we set u = x3 − 3x2 + 4x− 2 in the first integral, we get
∫ 2

−2
cosu du which equals 2 sin(2).

If we set v = x− 1 in the second integral, we get
∫ 1

−1
3v cos(v3 + v) dv. Applying the definition of even

and odd function shows cos(v3 + v) to be an even function, which means that v cos(v3 + v) is an odd

function and the second integral is 0.

Therefore, the original integral is equal to 2 sin(2).

2. In a certain group of cancer patients, each patient’s cancer is classified in exactly one of the following

five stages: stage 0, stage 1, stage 2, stage 3, or stage 4.

(a) 75% of the patients in the group have stage 2 or lower

(b) 80% of the patients in the group have stage 1 or higher

(c) 80% of the patients in the group have stage 0,1, 3, or 4.

One patients is randomly selected. Calculate the probability that the selected patient’s cancer is stage

1.

Solution: Let pi be the probability that a randomly chosen patient’s cancer is in stage i for i =

0, 1, 2, 3, 4. Combining the given information and the fact that the probabilities must sum to 1, we

have that

p0 + p1 + p2 + p3 + p4 = 1

p0 + p1 + p2 = 0.75

p1 + p2 + p3 + p4 = 0.80

p0 + p1 + p3 + p4 = 0.80

Therefore, we know that

p0 = (p0 + p1 + p2 + p3 + p4)− (p1 + p2 + p3 + p4) = 1− 0.8 = 0.2

and that

p2 = (p0 + p1 + p2 + p3 + p4)− (p0 + p1 + p3 + p4) = 1− 0.8 = 0.2

from which we can conclude that

p1 = 0.75− p0 − p2 = 0.75− 0.2− 0.2 = 0.35.



3. Compute ∫ √
π/3

0

sinx2 dx+

∫ √
π/3

−
√

π/3

x2 cosx2 dx.

Solution: We have∫ √
π/3

0

sinx2 dx+

∫ √
π/3

−
√

π/3

x2 cosx2 dx =

∫ √
π/3

0

sinx2 dx+ 2

∫ √
π/3

0

x2 cosx2 dx

=

∫ √
π/3

0

[sinx2 + x cosx2 · 2x] dx =

∫ √
π/3

0

d

dx
(x sinx2) dx

= x sinx2|
√

π/3

0 =
√
π/2.

4. Let a1, a2, a3, · · · be the increasing sequence of positive integers that are divisible by 2 or 5. The

sequence begins 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, . . . Compute the sum of the following series.

∞∑
n=1

1

2an
=

1

2a1
+

1

2a2
+

1

2a3
+ · · ·

Solution: By inclusion-exclusion,

∞∑
n=1

1

2an
=

∞∑
k=1

1

22k
+

∞∑
k=1

1

25k
−

∞∑
k=1

1

210k

=
1/4

1− 1/4
+

1/32

1− 1/32
− 1/1024

1− 1/1024

=
1

3
+

1

31
− 1

1023

=
373

1023
.

5. Find all integer solutions (x, y) to the equation xy = 5x+ 11y.

Solution:

First, if we re-write the equation xy = 5x+ 11y as xy − 5x− 11y = 0, we can add 55 to both sides to

get xy − 5x− 11y + 55 = 55. So we have

(x− 11)(y − 5) = 55.

Now, x and y are supposed to be integers, so x − 11 and y − 5 should also be integers. Thus, the

question is, how many different pairs of integers can we find whose product is 55? There are eight

pairs:

(55, 1), (−55,−1), (1, 55), (−1,−55), (5, 11), (−5,−11), (11, 5), (−11,−5).

If x− 5 is to represent the first number and y− 11 is to represent the second number, then solving for

x and y in each pair yields the eight possible solutions

x = 66, y = 6 x = −44, y = 4 x = 12, y = 60

x = 10, y = −50 x = 16, y = 16 x = 6, y = −6

x = 22, y = 10 x = 0, y = 0.



6. Find

lim
n→∞

(
1

√
n
√
n+ 1

+
1

√
n
√
n+ 2

+ · · ·+ 1
√
n
√
2n

)
.

Solution:

lim
n→∞

(
1

√
n
√
n+ 1

+
1

√
n
√
n+ 2

+ · · ·+ 1
√
n
√
2n

)
= lim

n→∞

1

n

(√
n

n+ 1
+

√
n

n+ 2
+ · · ·+

√
n

n+ n

)
= lim

n→∞

1

n

(
1√

1 + 1/n
+

1√
1 + 2/n

+ · · ·+ 1√
1 + 1

)

=

∫ 1

0

1√
1 + x

dx = 2
√
1 + x

∣∣∣∣1
0

= 2(
√
2− 1).

Alternate Solution: Using the Stolz-Cesàro Theorem (essentially the discrete case of L’Hôpital’s

Rule), rationalizing the denominator, and looking at the highest powers of n, we have

lim
n→∞

∑n
k=1

1√
n+k√

n
= lim

n→∞

1√
2n+1

+ 1√
2n+2

− 1√
n+1√

n+ 1−
√
n

= lim
n→∞

(
√
n+ 1 +

√
n)

(
1√

2n+ 1
+

1√
2n+ 2

− 1√
n+ 1

)
= lim

n→∞

(
2
√
n√
2n

+
2
√
n√

2n
− 2

√
n√
n

)
= 2

√
2− 2.

7. Let

f(r) =

2016∑
j=2

1

jr
=

1

2r
+

1

3r
+ · · ·+ 1

2016r
.

Find ∞∑
k=2

f(k).

Solution:

After switching the order of summation, we note that the inner sum is a convergent geometric series.

Thus, we can proceed as follows:

∞∑
k=2

2016∑
j=2

1

jk
=

2016∑
j=2

∞∑
k=2

1

jk
=

2016∑
j=2

1
j2

1− 1
j

=
2016∑
j=2

1

j2 − j
=

2016∑
j=2

1

j(j − 1)
=

2016∑
j=2

(
1

j − 1
− 1

j

)
=

1

1
− 1

2
+

1

2
− 1

3
+ · · ·+ 1

2015
− 1

2016
=

2015

2016
.

8. Urn 1 contains 10 balls: 4 red and 6 blue. A second urn originally contains 15 red balls and an

unknown number of blue balls. Joe draws a single ball from the first urn and places it into the second

urn. He then draws a ball from the second urn. Prior to conducting the experiment, the probability

that both balls drawn will be of the same color is 0.5 What is the probability the ball drawn from urn

1 was red given that the ball drawn from urn 2 was red?



Solution: Let x be the number of blue balls in the second urn. The probability of drawing the same

color ball from both urns is

Pr(drawing both red) + Pr(drawing both blue) =

(
4

10

)(
16

x+ 16

)
+

(
6

10

)(
x+ 1

x+ 16

)
Busting out some amazing algebra, we set this to 0.5 and solve for x.(

4

10

)(
16

x+ 16

)
+

(
6

10

)(
x+ 1

x+ 16

)
= 0.5

64 + 6x+ 6

10x+ 160
= 0.5

6x+ 70 = 5x+ 80

x = 10

Next, P(Red Draw 1 | Red Draw 2) = P(Red Draw 1 AND Red Draw 2) / P(Red Draw 2)

P(Red Draw 1 AND Red Draw 2) = (4/10) (16/26) = 64/260.

P(Red Draw 2) = P(Red Draw 1 AND Red Draw 2) + P(Blue Draw 1 AND Red Draw 2) = 16/65 +

(6/10)(15/26) = 16/65 + 90/260 = 64/260 + 90/260 = 154/260 = 77/130.

P(Red Draw 1 | Red Draw 2) = (64/260) / (154/260) = 64/154 = 32/77.

9. The rhombicosidodecahedron is an Archimedean solid with faces that are equilateral triangles, squares,

and regular pentagons. It has 60 vertices and 120 edges. If 20 of the faces are triangles and 12 are

pentagons, how many must be squares?

Solution 1: Because it is a solid, it has Euler Characteristic 2, so V −E+F = 2. Subbing in E = 120

and V = 60, we find the total number of faces is F = 62. With 20 triangles and 12 pentagons, that

leaves 30 faces that must be squares.

Solution 2: Let n be the number of squares. Then we can count the number of edges: three in each

triangle, four in each square and five in each pentagon to get 3(20) + 4n + 5(12) = 120 + 4n. Since

every edge is in two faces, this gives 120 + 4n = 2(120), which yields n = 30.

10. Prove that AB − BA ̸= In for any n× n matrices A and B over the real numbers, where In denotes

the n× n identity matrix.

Solution: We consider the sum of the elements of main diagonals. Let A = (aij) and B = (bij). Then

the sum of the elements of the main diagonal of AB − BA is
n∑

i=1

n∑
j=1

aijbji −
n∑

i=1

n∑
j=1

bijaji = 0 while

the sum of the main diagonal of In is n. Therefore, AB −BA ̸= In.



2015 Leo Schneider Student Team Competition

1. Find
∫∞
0

1√
ex−1

dx.

Solution. Put u =
√
ex − 1. Then

du

dx
=

ex

2
√
ex − 1

=
u2 + 1

2u
.

Using u-substitution, our integral becomes∫ ∞

0

1

u
· 2u

u2 + 1
du = 2

∫ ∞

0

1

u2 + 1
du

= 2arctanu
∣∣∞
0

= 2
(π
2
− 0
)

= π.

2. A fair die and an unfair die are in a bag. The probability of rolling a six with the unfair die is 1/4.

One of the dice is randomly drawn from the bag (each one is equally likely to be chosen). A six is

rolled with this die. You roll this same die again. What is the probability that a six is rolled?

Solution. We have either chosen the fair die and need to roll another six, or we have chosen the unfair

die and need to roll another six. Theoretically, if this experiment is repeated 24 times, 12 times the

fair die is chosen and 12 times the unfair die is chosen. Of the 12 times the fair die is chosen, a six is

rolled 2 times. Of the 12 times the unfair die is chosen, a six is rolled 3 times. Thus, the probability

that the die is fair, given that a six is rolled, is 2/5. So, the probability of rolling another six is

2

5
· 1
6
+

3

5
· 1
4
=

13

60
.

(Alternatively, we can use Bayes’ Theorem to get

P (fair|6) = P (6|fair)P (fair)

P (6|fair)P (fair) + P (6|unfair)P (unfair)
=

1
6 · 1

2
1
6 · 1

2 + 1
4 · 1

2

=
2

5
.)

3. Tom and Jerry decide today that they will not pick on each other on the n-th day if an = −1 where

a1 = 1, a2 = 1, a3 = −1, and an for n > 3 is inductively given by an = an−1an−3. Will they pick on

each other on the 1776-th day? Prove your answer.

Solution:

Direct computation shows that the first ten terms are

1, 1,−1,−1,−1, 1,−1, 1, 1,−1

where the last three terms are the same as the first three terms respectively. Since for n > 3, the

an is defined in terms of the previous three terms, the sequence is periodic with period 7. Since

1776 = 253 · 7 + 5, a1776 = a5 = −1. Thus, Tom and Jerry will pick on each other on the 1776-th day.



4. For each positive integer k, let

Ak =


1 k 1

0 1 0

0 1 0


(a) Find a closed form expression for the matrix An

1 in terms of n. Prove your answer.

(b) Find all ordered pairs (k, n) of positive integers for which An
k = A75.

Solution:

In closed form, An
1 and An

k are given below. Either formula can be proved by induction.

An
1 =


1 2n− 1 1

0 1 0

0 1 0

 = A2n−1 An
k =


1 nk + n− 1 1

0 1 0

0 1 0

 = Ank+n−1

In order to have An
k = A75 for positive integers (k, n), we must have nk + n − 1 = 75, or n(k + 1) =

76. Looking at the prime factorization of 76 = 22 · 19, we see that there are only five possibilities:

{(1, 38), (3, 19), (18, 4), (37, 2), (75, 1)}.

5. Find the limit

lim
n→∞

[
(1 + 1

n )
n

e

]n

Solution.First, take the natural log of the nth term, to get n(n ln(1 + 1
n ) − 1). The limit of this

sequence is −1/2, which can be seen from the MacLaurin series for ln(1 + 1/n),

ln(1 + 1/n) = (1/n)− (1/n)2

2
+

(1/n)3

3
− (1/n)4

4
+ · · ·

or by applying L’Hospital’s Rule to

lim
n→∞

ln(1 + 1
n )−

1
n

1
n2

Thus the original limit is e−1/2 =
1√
e
.

6. How many solutions does the equation 20x+ 15y = 2015 have over the positive integers?

Solution. Dividing through by 5 gives us 4x + 3y = 403. Clearly, x = 100 and y = 1 gives us a

solution. Since 3 and 4 are relatively prime, every time we add 4 to y and subtract 3 from x we get

another solution, and this will cover all positive integer solutions. At most, we can subtract 33 3’s

from 100, so there are 34 pairs of positive integer solutions.

7. A non-empty set of positive integers is said to be square-valued if the product of all of its elements is

a perfect square. How many (non-empty) subsets of {10, 22, 30, 42, 55, 231} are square-valued?

Solution:

First, factor the integers.

10 = 2 · 5, 22 = 2 · 11, 30 = 2 · 3 · 5, 42 = 2 · 3 · 7, 55 = 5 · 11, 231 = 3 · 7 · 11



Any product of some subset of these numbers will be a square if and only if the total exponent for

each of the primes is even. This reasoning leads to the following solutions: {10, 22, 55}, {22, 42, 231},
and {10, 42, 55, 231}.

8. For the function, f(x) = ln

(
1− 1

x2

)
, find the value of:

f ′(2) + f ′(3) + f ′(4) + · · ·+ f ′(2015).

Solution:

Using properties of logs, we rewrite f(x) = ln

(
x2 − 1

x2

)
= ln(x − 1) + ln(x + 1) − 2 lnx. Then the

derivative can be written as

f ′(x) =
1

x− 1
+

1

x+ 1
− 2

x
.

Then we see that the series telescopes to a sum of(
1

2− 1
− 2

2
+

1

3− 1

)
+

(
1

2014 + 1
+

1

2015 + 1
− 2

2015

)
=

1

2
− 1

2015
+

1

2016

9. Let S be the set of vertices of a regular 36-gon. What is the smallest value of n for which any subset of

S of size n must contain the three vertices of some equilateral triangle? You must prove your answer.

Solution:

Each element of S is a vertex of exactly one equilateral triangle. So S can be partitioned into 12

disjoint subsets of cardinality 3, with each cell exactly consisting of the vertices of some equilateral

triangle. (In particular, if the vertices are numbered consecutively, these subsets are those containing

k, k + 12, and k + 24 (mod 36).) If we choose 2 vertices from each cell, we can construct a subset of

S of size 24 that does not contain the vertices of any equilateral triangle. However, if we choose any

25 vertices, there will necessarily be 3 in some cell by the Generalized Pigeonhole Principle. Therefore

the answer is 25.

10. Twenty calculus students are comparing grades on their first two quizzes of the year. The class

discovers that whenever any pair of students consult with one another, these two students received the

same grade on their first quiz or they received the same grade on their second quiz (or both). Prove

that the entire class received the same grade on at least one of the two quizzes.

Solution:

If all the students receive the same score on the first quiz, we are done. Otherwise two students, call

them A and B, received different scores on the first quiz, and hence have identical scores on the second

quiz. Now consider any other student C, who can’t match both of A and B on the first quiz. Hence

C must agree with either A or B on the second quiz, and hence also receives this common quiz two

score. This logic applies to every student, so we deduce they all have the same quiz two score.



2013-2014 CONSTUM Problems and Solutions

1. Find an equation with integral coefficients whose roots include the numbers

(a)
√
2 +

√
3

(b)
√
2 + 3

√
3

Solution:

(a) Write x =
√
2 +

√
3. Then

x2 = 5 + 2
√
6 or x2 − 5 = 2

√
6.

Squaring both sides, we obtain

x4 − 10x2 + 25 = 24 or x4 − 10x2 + 1 = 0.

(b) Let x =
√
2 + 3

√
3. Then

x2 = 2 + 2
√
2 · 3

√
3 +

3
√
9

x3 = 2
√
2 + 3 · 2 3

√
3 + 3

√
2 · 3

√
9 + 3.

By substituting 3
√
3 = x−

√
2 and

3
√
9 = x2 − 2− 2

√
2 · 3

√
3 = x2 − 2− 2

√
2(x−

√
2) = x2 + 2− 2

√
2x

into the equation for x3, we obtain

x3 = 2
√
2 + 6(x−

√
2) + 3

√
2(x2 + 2− 2

√
2x) + 3, or

x3 + 6x− 3 =
√
2(3x2 + 2).

We now square both sides to eliminate the radical and move everything to the left hand side to

obtain

x6 − 6x4 − 6x3 + 12x2 − 36x+ 1 = 0.

2. Let a1, a2, a3, · · · be the increasing sequence of positive integers that are not divisible by 2 or 3. The

sequence begins 1, 5, 7, 11, 13, 17, · · · Compute the sum of the following series.

∞∑
n=1

1

2an
=

1

2a1
+

1

2a2
+

1

2a3
+ · · ·

Solution.This series is absolutely convergent, so we may break it up into two series: one with the

terms an ≡ 1 (mod 6) and one with the terms that are an ≡ 5 (mod 6). These are both geometric.

∞∑
k=0

1

26k+1
=

∞∑
k=0

1

2

(
1

64

)k

=
1/2

1− 1/64
=

32

63

∞∑
k=0

1

26k+5
=

∞∑
k=0

1

32

(
1

64

)k

=
1/32

1− 1/64
=

2

63

So the original series converges to
34

63
.



3. It is well-known that ∫ ∞

0

sinx

x
dx =

π

2
.

Find ∫ ∞

0

(
sinx

x

)2

dx.

Solution. Using integration by parts with u = sin2 x and dv = x−2 dx, followed by the substitution

w = 2x, gives ∫ ∞

0

(
sinx

x

)2

dx = − sin2 x

x

∣∣∣∣∞
0

+

∫ ∞

0

sin(2x)

x
dx

=

∫ ∞

0

sinw

w
dw

= π
2 .

4. Evaluate

lim
x→∞

∫ x

0

√
4 + t4 dt

x3
.

Solution:

Using L’Hospital’s Rule and the Fundamental Theorem of Calculus, we have

lim
x→∞

∫ x

0

√
4 + t4 dt

x3
= lim

x→∞

√
4 + x4

3x2
.

Another application of L’Hospital’s Rule gives

lim
x→∞

√
4 + x4

3x2
= lim

x→∞

x3

3x
√
4 + x4

=
1

3
.

5. Let f(n) = 25n − 72n− 1. Determine, with proof, the largest integer M such that f(n) is divisible by

M for every positive integer n.

Solution. The answer is M = 48. Since f(1) = −48, it is clear that M must be a divisor of 48. Using

the factorization xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ x+ 1) we may write

f(n) = 25n − 1− 72n = 24(25n−1 + 25n−2 + · · ·+ 25 + 1)− 24(3n).

Whether n is even or odd, this is an even multiple of 24, so is divisible by 48. Thus, M = 48 is the

largest common divisor of all the values of f(n).

6. Choose N elements of {1, 2, 3, . . . , 2N} and arrange them in increasing order. Arrange the remaining

N elements in decreasing order. Let Di be the absolute value of the difference of the ith elements in

each arrangement. Prove that D1 +D2 + · · ·+DN = N2.



Solution. Imagine the numbers 1 through N colored red and the numbers N +1 through 2N colored

blue. The increasing arrangement will consist of some red elements followed by some blue elements.

Suppose there are X red elements and so N − X blue elements. The decreasing arrangement will

therefore consist of X blue elements followed by N − X red elements. So the ith elements of the

two arrangements will consist of a “red” number paired with a “blue” number. It follows that D1 +

D2 + · · · + DN will be the sum of the blue numbers minus the sum of the red numbers, that is

D1 +D2 + · · ·+DN = [(N + 1) + (N + 2) + · · ·+ 2N)]− [1 + 2 + · · ·+N ] = N2.

7. If n is a positive integer, let r(n) denote the number obtained by reversing the order of the decimal

digits of n. For example, r(382) = 283 and r(410) = 14. For how many two digit positive integers n

is the sum of n and r(n) a perfect square?

Solution:

Let a and b be the digits of n, so that n = 10a+ b, 0 ≤ a, b ≤ 9 and a ̸= 0. Then

n+ r(n) = 10a+ b+ 10b+ a = 11(a+ b).

Now n+ r(n) can only be a perfect square if 11 divides a+ b. This leads to the following complete list

of solutions:

n = {29; 38; 47; 56; 65; 74; 83; 92}.

8. Determine the number of three word phrases that can be formed from the letters in MATH ALL DAY.

No “words” can be empty, and words do not have to make sense. For example, MAD HAT ALLY

and T DMALL YAAH are valid phrases, but not HALT MALADY. You do not have to simplify your

answer.

Solution. View the overall task of forming a three word phrase as a two step process. First, we

arrange the 10 letters. Then, we decide where the two spaces go. By the Product Rule for Counting,

the total number of ways to form a three word phrase will be the product of the numbers of ways to

do these two smaller tasks. Because there are three A’s and two L’s, the number of ways to arrange

the letters is 10!/(3!2!). Then we have 9!/(2!7!) ways to choose the two gaps (out of nine) where the

spaces must go. So the total number of three word phrases is given by

10!

3!2!
· 9!

2!7!
= 3 · 10! = 10, 886, 400.

9. A circle of radius r is inscribed in a right triangle with leg 4r. Prove that the triangle is a 3-4-5 right

triangle.

Solution. We may assume that the radius is 1 and that one leg is 4. Let the triangle be ABC with

right angle at C and AC = 4. Let P be the point of tangency of the incircle with hypotenuse AB,

let Q be the point of tangency of the incircle with leg BC, and let R be the point of tangency of the

incircle with leg AC. Since the two tangents to a circle from an exterior point have the same length,

we have AP = AR = 3. Let BP = BQ = x. Then (3 + x)2 = (1 + x)2 + 42. Solving, we have x = 2,

and the result follows.



10. Recall that the set of real numbers forms an infinite-dimensional vector space V over the ratio-

nals (i.e., the set of vectors are the real numbers, and the set of scalars are the rational num-

bers). Let 2, 3, 5, 7, . . . , p2014 be the first 2014 prime numbers, and define the vectors vk = ln(pk)

for k = 1, 2, . . . , 2014. Let S be the subspace of V spanned by the vectors v1, v2, . . . , v2014. Find, with

proof, the dimension of S.

Solution:

The dimension is 2014, because these vectors are linearly independent. Suppose, to the contrary, that

the vectors were not linearly independent. Then there exist scalars r1, r2, . . . , r2014, not all zero, such

that

r1v1 + r2v2 + · · ·+ r2014v2014 = 0.

Multiplying by the common denominator, we get the equation

k1v1 + k2v2 + . . .+ k2014v2014 = 0,

where the ki are all integers, not all zero. Consequently, some of these ki must be positive, and some

must be negative. Ignoring the zero-value ks, and segregating the terms with positive ki on the left,

we get

ki1vi1 + · · ·+ kitvit = ℓj1vj1 + . . .+ ℓjsvjs ,

where the ℓs are just negatives of the ks that were negative (and hence are positive). Exponentiating

both sides of this equation, we get

pki1 · · · pkik = pℓj1 · · · pℓjs .

This equation shows a product using one set of primes (pi1 , pi2 , . . . , pit) on the left side, which is equal

to a product that uses a completely different set of primes (pj1 , pj2 , . . . pjs) on the right. But this

contradicts the Fundamental Theorem of Arithmetic, which states that every integer can be factored

in a unique way into primes.



2013 Leo Schneider Student Team Competition

1. For the arithmetic sequence a1, a2, ..., a16, it is known that a7 + a9 = a16. Find each subsequence of

three terms that forms a geometric sequence.

Solution:

a16 = a1+15d, where d is the common difference, a7 = a1+6d and a9 = a1+8d. Since a7+ a9 = a16,

a1+6d+a1+8d = a1+15d. Therefore, d = a1. Therefore, the i-th term of the sequence ai = a1+(i−1)d,

where i = 1, 2, 3, ..., 16. Since d = a1, ai = a1 + ia1 − a1 = ia1 so that a1 = 1a1, a2 = 2a1, a3 = 3a1,....

Consequently, one subsequence forming a geometric sequence is a1, a2, a4 (with a common ratio

r=2). A second subsequence is a1, a3, a9 (with a common ratio r=3). A third subsequence is a1, a4,

a16 (with common ratio r=4). The fourth, fifth, and sixth subsequences are a2, a4, a8 (r=2); a3, a6,

a12 (r=2); a4, a8, a16 (r=2);

For non-integer values of r such that 1 < r < 4, we have only r = 3
2 and r = 4

3 , so that addi-

tional sequences are a4, a6, a9 and a9, a12, a16

2. Compute the limit:

lim
x→∞

1

xex

∫ (x+1)2

x2

e
√
t dt.

Solution:

Applying L’Hospital’s Rule, the Fundamental Theorem of Calculus, and the Chain Rule, we get

lim
x→∞

∫ (x+1)2

x2 e
√
t dt

xex
= lim

x→∞

d
dx

∫ (x+1)2

x2 e
√
t dt

d
dx (xe

x)

= lim
x→∞

2(x+ 1)ex+1 − 2xex

xex + ex

= lim
x→∞

2e(x+ 1)− 2x

x+ 1

= 2e− 2.



3. Part a. Let f(x) = ex sinx. Find f (10)(0), the 10th derivative of f evaluated at x = 0.

Part b. Let f(x) = ex sinx. Find f (2013)(0), the 2013th derivative of f evaluated at x = 0.

Solution to part a. If
∑∞

n=0 anx
n is the Maclaurin series for f , then f (10)(0) = 10! · a10. One way

to find a10 is to multiply the Maclaurin series for y = ex and y = sinx together and keep track of the

coefficient of x10. In this way, we see that

a10 =
2

9!
− 2

3!7!
+

1

5!5!
.

Thus, f (10)(0) = 10!a10 = 32 .

Solution to part b. It is easy to verify that f(0) = 0, f ′(0) = 1, f ′′(0) = 2, f ′′′(0) = 2, and

f (4)(x) = −4f(x). Thus, f (2013)(0) = (−4)2012/4 = −21006. (Also, this gives us another way to solve

part a: f (10)(0) = 2(−4)8/4 = 32.)

4. Find, with explanation, the maximum value of f(x) = x3−3x on the set of all real numbers x satisfying

x4 + 36 ≤ 13x2.

Solution:

The condition x4 + 36 ≤ 13x2 is equivalent to

x4 − 13x2 + 36 = (x2 − 9)(x2 − 4) = (x+ 3)(x− 3)(x+ 2)(x− 2) ≤ 0,

which is satisfied only on [−3,−2] and on [2, 3]. Since f ′(x) = 3x2 − 3 = 3(x + 1)(x − 1) > 0 on

[−3,−2] and on [2, 3], the function f is increasing on both intervals. It follows that the maximum

value is max{f(−2), f(3)} = 18.

5. Let N be a positive integer containing exactly 2013 digits none of whose digits is zero. Show that N is

either divisible by 2012 or N can be changed to an integer that is divisible by 2013 by replacing some

but not all of its digits by zero.

Solution:

Let N = b1b2 . . . b2013 be an integer where each digit bi > 0 (i = 1, 2, . . . 2013). Let N0 = 0, and for

any 1 ≤ k ≤ 2013, let Nk denote the number obtained by replacing all but the first k digits of N by

the digit 0. By the pigeon hole principle, there exists 0 ≤ k1 < k2 ≤ 2013 such that Nk1 and Nk2 are

congruent modulo 2013. So the difference Nk1 −Nk2 is divisible by 2013. Since Nk1 −Nk1 is obtained

from N by replacing some but not all of the digits of N by zero, we are done.



6. Prove that 22013 + 3 is a multiple of 11.

Solution. Working mod 11, we have that

22013 + 3 = 23 · 22010 + 3

= 8(25)402 + 3

= 8(32)402 + 3

≡ 8(−1)402 + 3

≡ 0.

7. A random number generator randomly generates integers from the set {1, 2, . . . , 9} with equal proba-

bility. Find the probability (with explanation) that after n numbers are generated, their product is a

multiple of 10.

Solution:

The product is a multiple of 10 if an only if at least one 5 and at least one even integer have been

generated. If A is the event that a 5 has been generated, and B is the event that at least one even

integer has been generated, then we are looking for Pr(A ∩B). Letting E′ denote the complement of

an event E, we know that

Pr((A ∩B)′) = Pr(A′ ∪B′)

= Pr(A′) + Pr(B′)− Pr(A′ ∩B′).

The event A′ ∩ B′ represents the case in which neither a 5 nor an even integer has been generated,

and consequently Pr(A′ ∩B′) = ( 49 )
n. Since Pr(A′) = (89 )

n and Pr(B′) = ( 59 )
n, it follows that

Pr((A ∩B)′) =

(
8

9

)n

+

(
5

9

)n

−
(
4

9

)n

,

and

Pr(A ∩B) = 1− Pr((A ∩B)′) = 1−
(
8

9

)n

−
(
5

9

)n

+

(
4

9

)n

.

8. Planet A is going to launch n missiles at Planet B, which has n cities. Each missile will hit exactly

one city. For each missile, the Planet B city that gets hit is completely random. Find the probability

that exactly one city on Planet B will not get hit with any of the n missiles.

Solution:

The probability is
(n2)n!
nn = (n−1)(n−1)!

2nn−2 . There are many ways to obtain this. Here is one. The

denominator is nn because this is the number of ways to place n missiles in n cities. The numerator

is the number of ways of placing the missiles such that exactly one city is not hit. There are n ways

to specify the city that does not get hit. There are n− 1 ways of choosing the city that gets hit with

two missiles. There are
(
n
2

)
ways of picking the 2 missiles to hit this city. And there are (n− 2)! ways

of placing the remaining n − 2 missiles into the n − 2 cities, one missile in each city. The product of

these is the numerator n(n− 1)
(
n
2

)
(n− 2)! =

(
n
2

)
n!.



9.

Two unit squares stand on the hypotenuse of a (3,4,5)

triangle in such a way that they line inside the triangle,

and a corner of one touches the side of length 3 and a

corner of the other touches the side of length 4, as

shown in the figure to the right. What is the distance

d between the squares?

Solution:

Because the small triangle in the lower left is similar to the (3,4,5) triangle, we know that the side of

length 3 in the figure has slope 4
3 , so the base of the small triangle in the lower left is 3

4 . The side of

length 4 has slope − 3
4 , so the base of the small triangle in the lower right is 4

3 . Then

d = 5− 3

4
− 4

3
− 2 =

11

12
.

10. Let A and B be 3× 3 matrices with integer entries, such that AB = A+ B. Find all possible values

of det(A− I). Note: The symbol I represents the 3× 3 identity matrix.

Solution:

The given equation is equivalent to

AB −A−B + I = I or to (A− I)(B − I) = I.

Since the matrices have integer entries, the determinants of A− I and B− I are integers, and the last

equation implies that det(A − I) = det(B − I) = ±1. Both cases are possible: if A = B = O, then

det(A− I) = det(−I) = −1, and if A = B = 2I, then det(A− I) =det(I) = 1.
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